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Summary

The paper definesa class of almost unbiasedregression- type estiinatiors
for finite population mean using jack-knife technique suggested by
Quenouille [3]. The variance expression of the proposedclass of estimators
is obtained. In particular, classes of almost unbiased ratio-type and exactly
unbiased product-type estimators are generated.

Key yvords : Almo.st unbiased regression-type estimators, Jack-Knife
technique, ratio and product-type estimatiors.

Introduction

'\ Tiie linear regression estimate is designed to increase precision by the use
\ of an auxiliaiy variate x that is correlated with the study variate y. When the

relation between y and x is examined, it may be found that although the relation
is approximately linear, the line does not go through the origin. This suggests,
an estimate based on the linear regression of y on x rather than on the ratio
of the two variables.

Let the variates y, x take values (y^ Xj) on the ith unit (i = 1, 2, . . ., N)
of a fimte population. A common situation in stirveys is that the populatioii
mean X of an aiixilary characteristic x is known and we are to estimate Y,
the population mean of the sttidy charactery. For illustration, consider a simple
random sample of size n (< N) units withotit replacement from the population.
Let (y, x) be unbiased estimators of X) based on n observations. Then the
usual linear regression estimator of Y is

yir = [y +f^(X-x)] (1.1)

where = ^^y/S^ is the sample regression coefficient of yon x.

xy
= (n-1) 'X(*i-*Xyi->0 and S^ = (n-1) '^^(xi-x)^
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Tlie bias and mean square error of to the first degree of approximation
are respectively given by

B(y,) =_S:Lji)
(N-2) n

Ml, ^30

Mil Mio
/

(See Sukhatme etal [10], page 239, equation (15))

and

MSE(S^,) =-^?^S^(l-p2)
where p = /S^ is thepopulation regression coefficient ofy onx,

(1.2)

(1.3)

Sxy = (N-l)-'X(^i-X)(yi-Y). = (N-1)-'X
i = l i=l

= (N-1)-' X (yi-Y)",

P = Sj^y/(S^Sy) is the population correlation coeficient between x and y and
n

Mrs = ^' X ~ (Vi ~ s = 1,2, 3, 4; (r, s) being non-negative
i = 1

integers.

It is obvious from (1.2) that>',^ is biased. It is therefore, desirable to reduce
or completely eliminate it. Few authors, including Mickey [2] and Williams
[11] have developed estimators tliat are unbiased, but have not yet been
exlensively tried. Rao [4] found Mickey's estimator usually inferior to the
standard regression and ratio estimators in the natural populations. In this paper
an attempt has been made to constnict a class of ahiiost unbiased regression
type estimators using jack-knife technique envisaged by Quenouille [3], which
is further developed by Schucany, Gray and.Owen [5].

2. The Class of Estimators

A simple random sample of size n = km drawn without replacement, is
split at random into K subsamples each of size m. Then the jack knifed
regression estimator is defined by

K

Y - y v'IrJ ir 2^ y (Ir)
j=l

(2.1)
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where [- y'. + '̂ (X - x'p] is the standard regression estimate, computed
from tlie sample with group j omitted, (j = 1, 2, . . ., K);
_ n n

= (ny-my.)/(n-m), x'. = (n x- mx'.)/(n - rn), ny = Xyi-n* = E
i = 1 i = 1

Î 'j ^ -1) -(m -1) {(n 1) -(m -1) S^J. }, (y., xp being the j""
in

sub sample means, =S (Xji-x.)(yji-y.)/(m-1) and
i = 1

m

i = 1 . . »

The bias of Y,^j to the first degree of approximation, is given by

fN—n 4- R f Uoi U^n
(2.2)BfY = (N-n +m)P

(n-m)(N-2)
^1.

The mean square error of Y|j.j to the first degree of approximation, is obtained
as follows :

Define

y'i = Y(1 +e'„.), x'j = X(1 +e'.p and = P(1 +e'̂ p
such that

E(e'„p = E(e'ip = Oand

E(( '̂p - p+0(n-')

=> ECe'̂ p = 0(n-')

Expressing Y,^j in terms ofe's we have

^ 1 Jl, _
Yirj = S [Y (1 +e'„p +3(1 +e'̂ p {X - X(1 +e'lp}]

j = 1 •

— K

or

Y+ oj (e'lj +e'lj e2p]
i = 1

^ - Y ^

j=l

-

t

1

\ >

(e'l. +e'ij.e'̂ p (2.3)
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where Cy = Sy/Y and C, - S^X.

Squaring both sides of (2.3) and ignoring terms involving e's having power
greater than two, we have

i<4-
j=i

4-2 '̂oj ®Ij ^

j*i=i

( '̂oj ®Ij ®01^ p e'lje'l,}

The following results can easily be derived :

E(e'Jj) = ?^c5.E(e'̂ j) = >.C^. E(e'oje',p = IpC^C,,

ECe'oj-e'o,) =>.* C^, E(e'oj e'l,) =E(e'ije'o,) =X." pCy C^, E(e'ij. e'l,) =^ Cl
where

(k^-2K)_ (N-n +m) ,. ^ 1
N(n-m) (K-1)^ n N "N

'X»

Taking expectation of both sidei_of (2.4), using tlie above results and after
simplification, we get the MSE of to the first degree of approximation as

MSE (V =2^s; (1 -p') =MSE (y,)
Now, define a class of regression - type estimators for Y as

Ye = (eiy+e^y^ + ea V
3

where 0^,02 and 63 are suitably chosen constants such that X 0/ =1-
I s= 1

It follows from (1.2) and (2.2) that an estimator in the class (2.6) would
be almost unbiased if and only if

where

8 02 + 03 = 0 ,

(N - n)(n - m)
8 = (N - n + m) n

(2.5)

(2.6)

(2.7)

(2.8)
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If we set 01 = (1 -a-(p),02 = a and %= in (2.6) then unbiasedness
condition takes the form

(p = - 5 a

Tlius, get the general class of ahnost unbiased regression type estimators
K

{l-a(l-5)}y +ay^-a8- X y'coj
j=i

(2.10)

of Y, where a is a suitably chosen constant.

Remark 2.1: One can observe thata = 0 gives the usual unbiased estimator
y while a = (1 - 8)"' yields tlie estimator

Yi-
(N- »+m)„- (N-n) (K-1) y (2.11)

When Nis very large or the population is infinite tlie estimator Y, reduces
to

Yi = Ky,-%^ E y'ooj
j = i

(2.12)

which is reported in Cochran ([1], equation (7.62), page 203).

Remark 2.2 : For (i) ^ = (y/^) and = (y'̂ / '̂j): and
r y'- ^ -a.(ii) (^ =_(y/x) and ^ ;the class of estimators Y^ in (2.10) reduces

to the class of almost unbiased ratio type and class of exacUy unbiased
product-type estimators, resprectively, as

K

{l-a(l-8)}y+ay(X/3^)-a5i ^ y'j(X/ '̂j) (2.13)Y.C-
j = 1

and

Ypc =

K

{1 -a(l -8)}y +ay(x/X)-a8^ Y, y'j(x'/X)
j = 1

(2.14)

which are due to Singh [13]. In addition to^ingh [6, 7, 8, 9] type estimators
many other ahnost unbiased estimators of Y can be had by substituting the
proper choices of a in Y^.
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3. Optimum Estimator in the Class Yg

Tlie variance of Y^, to the first degree of approximation is given by

(N-n)

nN

which is minimized for

V(Yg) = {2-a(l-5)p2] (3.1)

a = (1-8)-' = (say) (3.2)

Hence the resulting variance to the first degree of approximation, is

(3.3)Min.V<Y,) =V(y„) =2^(1 -p»)^
Substituting = (1-8) for a in (2.10) one can get optimum estimator
of the class (2.10) as given by

Y. =
(N-n + m) (N-n) (K-1)

K W•Ky,--
N N •

j-i

(3.4)

with the approximate variance equals to that of usual biased linear regression
estimator y^ given by (1.3).
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